Palembang, Sumatera Selatan
+62-822 8138-4428

Dinamika Parameter Hidroklimatologi pada Lahan Gambut di Sumatera Selatan Saat Terjadi Indian Ocean Dipole Positif dan La Niña

Dinamika Parameter Hidroklimatologi pada Lahan Gambut di Sumatera Selatan Saat Terjadi Indian Ocean Dipole Positif dan La Niña

Judul Buku: Dinamika Parameter Hidroklimatologi pada Lahan Gambut di Sumatera Selatan Saat Terjadi Indian Ocean Dipole Positif dan La Niña

Penulis: Muhammad Irfan
Desain sampul & tata letak: Akhmad Aminuddin Bama
Diterbitkan oleh: SIMETRI
Jml. Halaman: x + 62  hlm
Ukuran: 23 × 15 cm
ISBN: 978-602-1160-30-5

Deskripsi:

Anomali iklim akibat fenomena alam ENSO dan IOD sangat mempengaruhi parameter curah hujan, tinggi muka air tanah, dan kelembaban tanah pada lahan gambut di Sumatera Selatan. Anomali iklim tahun 2019 yang terjadi akibat fenomena alam IOD+ tingkat tinggi menyebabkan curah hujan, muka air tanah, dan kelembaban tanah memiliki nilai yang sangat rendah. Sementara itu, anomali iklim pada tahun 2020 akibat fenomena alam La Niña tingkat menengah menyebabkan nilai ketiga parameter tersebut berada di atas rata-rata. Buku ini (yang didasarkan pada hasil peneletian) membahas tentang korelasi yang kuat antara kelembaban tanah dan tingkat air tanah. Korelasi antara kedua parameter ini semakin kuat ketika curah hujan lebih sedikit. Pada musim kemarau ekstrim dengan curah hujan minimal, muka air tanah turun drastis sehingga kelembaban tanah turun drastis. Akibatnya, lahan gambut menjadi sangat kering dan mudah terbakar.

DAFTAR ISI         

Bab 1 PENDAHULUAN 

Bab 2  LAHAN GAMBUT 
2.1  Pengertian Lahan Gambut 
2.2  Proses Pembentukan Lahan Gambut 
2.3  Sebaran Lahan Gambut 
2.4  Ciri Khas Lahan Gambut
2.5  Klasifikasi Lahan Gambut 
2.6  Kondisi Lahan Gambut di Indonesia
2.7  El Niño-Southern Oscillation (ENSO) 
2.8  Indian Ocean Dipole (IOD)2.9  SESAME 
2.10  Analisis Statistik 


Bab3  PARAMETER HIDROKLIMATOLOGI
3.1  Curah Hujan
3.2  Groundwater Level 
3.3  Kelembaban Tanah
3.4  Hotspots (Titik Api) 


Bab 4  ENSO, IOD, DAN SESAME
4.1  El Niño-Southern Oscillation (ENSO)
4.2  Indian Ocean Dipole (IOD) 
4.3  SESAME

Bab 5  ANALISIS DINAMIKA PARAMETER HIDROKLIMATOLOGI 

5.1  Analisis Statistik5.2  Metode Penelitian

5.1  Analisis Dinamika Curah Hujan
5.2  Analisis Dinamika Groundwater Level 
5.3  Analisis Dinamika Kelembaban Tanah

Bab 6  PENUTUP

DAFTAR PUSTAKA

[1]    C. M. Yule, “Loss of biodiversity and ecosystem functioning in Indo-Malayan peat swamp forests,” Biodivers. Conserv., vol. 19, no. 2, pp. 393–409, 2010.
[2]    J. Taminskas, R. Linkevičienė, R. Šimanauskienė, L. Jukna, G. Kibirkštis, and M. Tamkevičiūtė, “Climate change and water table fluctuation: Implications for raised bog surface variability,” Geomorphology, vol. 304, pp. 40–49, 2018.
[3]    E. de Goede et al., “Peatland vegetation composition and phenology drive the seasonal trajectory of maximum gross primary production,” Sci. Rep., vol. 8, no. 1, pp. 1–12, 2018.
[4]    L. Sheng, C. He, Y. Shi, Z. Wang, X. Zhang, and X. Ren, “Using 13C isotopes to explore denitrification-dependent anaerobic methane oxidation in a paddy-peatland,” Sci. Rep., vol. 7, no. 1, pp. 1–9, 2017.
[5]    P. Alekseychik et al., “Species-specific temporal variation in photosynthesis as a moderator of peatland carbon sequestration,” Biogeosciences, vol. 14, no. 2, pp. 257–269, 2017.
[6]    S. Kobayashi, Peatland and peatland forest in Brunei Darussalam. 2015.
[7]    M. Osaki and N. Tsuji, “Tropical peatland ecosystems,” Trop. Peatl. Ecosyst., pp. 1–651, 2015.
[8]    I. Iskandar et al., “Evolution of 2015/2016 El Niño and its impact on Indonesia,” AIP Conf. Proc., vol. 1857, 2017.
[9]    D. O. Lestari, E. Sutriyono, Sabaruddin, and I. Iskandar, “Severe Drought Event in Indonesia Following 2015/16 El Niño/positive Indian Dipole Events,” J. Phys. Conf. Ser., vol. 1011, no. 1, 2018.
[10]  E. P. Lim and H. H. Hendon, “Causes and Predictability of the Negative Indian Ocean Dipole and Its Impact on la Niña during 2016,” Sci. Rep., vol. 7, no. 1, pp. 1–12, 2017.
[11]  Z. Li, X. Lin, and W. Cai, “Realism of modelled Indian summer monsoon correlation with the tropical Indo-Pacific affects projected monsoon changes,” Sci. Rep., vol. 7, no. 1, pp. 1–7, 2017.
[12]  F. R. Muhammad, S. W. Lubis, I. Tiarni, and S. Setiawan, “Influence of the Indian Ocean Dipole (IOD) on Convectively Coupled Kelvin and Mixed Rossby-Gravity Waves,” IOP Conf. Ser. Earth Environ. Sci., vol. 284, no. 1, 2019.
[13]  “Project Formulation Survey” under the Governmental Commission on the Projects for ODA Overseas Economic Cooperation in FY 2013 Summary Report Improvement of Wastewater Treatment System and Cyclic Use of Resource for Palm Oil Mill in Malaysia,” 2013.
[14]  B. A. Margono, P. V. Potapov, S. Turubanova, F. Stolle, and M. C. Hansen, “Primary forest cover loss in indonesia over 2000-2012,” Nat. Clim. Chang., vol. 4, no. 8, pp. 730–735, 2014.
[15]  S. K. Behera and J. V. Ratnam, “Quasi-asymmetric response of the Indian summer monsoon rainfall to opposite phases of the IOD,” Sci. Rep., vol. 8, no. 1, pp. 1–9, 2018.
[16]  W. Iriana et al., “Ground-based measurements of column-averaged carbon dioxide molar mixing ratios in a peatland fire-prone area of Central Kalimantan, Indonesia,” Sci. Rep., vol. 8, no. 1, pp. 1–8, 2018.
[17]  L. Dong and M. J. McPhaden, “Unusually warm Indian Ocean sea surface temperatures help to arrest development of El Niño in 2014,” Sci. Rep., vol. 8, no. 1, pp. 1–11, 2018.
[18]  O. Fistikoglu, O. Gunduz, and C. Simsek, “The Correlation Between Statistically Downscaled Precipitation Data and Groundwater Level Records in North-Western Turkey,” Water Resour. Manag., vol. 30, no. 15, pp. 5625–5635, 2016.
[19]  M. G. Abdullahi and I. Garba, “Effect of Rainfall on Groundwater Level Fluctuation in Terengganu, Malaysia,” J. Remote Sens. GIS, vol. 4, no. 2, 2016.
[20]  Y. Hamada et al., “Guidebook for estimating carbon emissions from tropical peatlands in Indonesia,” p. 47, 2016.
[21]  B. Li, L. Wang, K. F. Kaseke, L. Li, and M. K. Seely, “The impact of rainfall on soil moisture dynamics in a foggy desert,” PLoS One, vol. 11, no. 10, 2016.
[22]  H. Hidayat et al., “Hydrology of inland tropical lowlands: The Kapuas and Mahakam wetlands,” Hydrol. Earth Syst. Sci., vol. 21, no. 5, pp. 2579–2594, 2017.
[23]  M. Irfan, “Some Insight Into Direct Observation of Hydrological Parameters in Peatland Area of the South Sumatera,” Int. J. GEOMATE, vol. 17, no. 60, pp. 124–129, 2019.
[24]  E. E. Ananto, “Di Provinsi Sumatera Selatan,” 2007.
[25]  I. Apriani, M. Kosar, and L. Rosalina, “Intip Hutan: Nasib Hutan Alam Indonesia,” For. Watch Indones., pp. 1–48, 2015.
[26]  M. Irfan, W. Mardiansyah, M. Ariani, A. Sulaiman, and I. Iskandar, “Is TRMM product good proxy for gauge precipitation over peat land area of the South Sumatera?,” J. Phys. Conf. Ser., vol. 1282, p. 012021, 2019.
[27]  O. C. Satya et al., “Evaluation of several cumulus parameterization schemes for daily rainfall predictions over Palembang City,” J. Phys. Conf. Ser., vol. 1816, no. 1, pp. 0–7, 2021.
[28]  S. Telemetri, Tinggi Muka Air. 2017.
[29]  M. Irfan, W. Mardiansyah, H. Surbakti, M. Ariani, A. Sulaiman, and I. Iskandar, “Spatio-Temporal Variability of Observed Ground Water Level at Peat Hydrology Unit in South Sumatera,” J. Comput. Theor. Nanosci., vol. 17, no. 2, pp. 1414–1421, 2020.
[30]  M. Irfan, O. C. Satya, Arsali, M. Ariani, A. Sulaiman, and I. Iskandar, “What is the rate of groundwater level decline on peatlands in South Sumatera during the 2019 extreme dry season?,” J. Phys. Conf. Ser., vol. 1816, no. 1, p. 012008, 2021.
[31]  M. Irfan, N. Kurniawati, M. Ariani, A. Sulaiman, and I. Iskandar, “Study of groundwater level and its correlation to soil moisture on peatlands in South Sumatra,” J. Phys. Conf. Ser., vol. 1568, no. 1, 2020.
[32]  C. E. Ballard, N. McIntyre, H. S. Wheater, J. Holden, and Z. E. Wallage, “Hydrological modelling of drained blanket peatland,” J. Hydrol., vol. 407, no. 1–4, pp. 81–93, 2011.
[33]  Y. Mualem, “A new model for predicting the hydraulic conduc,” Water Resour. Res., vol. 12, no. 3, pp. 513–522, 1976.
[34]  A. P. Kirana, I. S. Sitanggang, and L. Syaufina, “Hotspot Pattern Distribution in Peat Land Area in Sumatera Based on Spatio Temporal Clustering,” Procedia Environ. Sci., vol. 33, pp. 635–645, 2016.
[35]  M. Irfan, W. Mardiansyah, M. Yusup Nur Khakim1, M. Ariani, A. Sulaiman, and I. Iskandar, “Some insight into direct observation of hydrological parameters in peatland area of the south sumatera,” Int. J. GEOMATE, vol. 17, no. 60, pp. 124–129, 2019.
[36]  UNEP/SETAC, “Hotspots Analysis,” 2017.
[37]  T. Handayani, A. J. Santoso, and Y. Dwiandiyanta, “Pemanfaatan Data Terra Modis untuk Identifikasi Titik Api Pada Kebakaran Hutan Gambut (Studi Kasus Kota Dumai Provinsi Riau),” Semin. Nas. Teknol. Inf. dan Komun., vol. 2014, no. Sentika, pp. 2089–9813, 2014.
[38]  T. Doi, S. K. Behera, and T. Yamagata, “Predictability of the Super IOD Event in 2019 and Its Link With El Niño Modoki,” Geophys. Res. Lett., vol. 47, no. 7, pp. 1–9, 2020.
[39]  S. Y. Cahyarini and M. Henrizan, “Coral based-ENSO/IOD related climate variability in Indonesia: A review,” IOP Conf. Ser. Earth Environ. Sci., vol. 118, no. 1, 2018.
[40]  A. Wijaya, U. Zakiyah, A. B. Sambah, and D. Setyohadi, “Spatio-temporal variability of temperature and chlorophyll-a concentration of sea surface in Bali strait, Indonesia,” Biodiversitas, vol. 21, no. 11, pp. 5283–5290, 2020.
[41]  C. Ateş, Ö. Kaymaz, H. E. Kale, and M. A. Tekindal, “Comparison of Test Statistics of Nonnormal and Unbalanced Samples for Multivariate Analysis of Variance in terms of Type-I Error Rates,” Comput. Math. Methods Med., vol. 2019, 2019.
[42]  B. Gerald, “A Brief Review of Independent, Dependent and One Sample t-test,” Int. J. Appl. Math. Theor. Phys., vol. 4, no. 2, p. 50, 2018.
[43]  T. K. Kim, “Statistic and Probability,” no. Table 2, 2015.
[44]  T. W. Yuwati et al., “Restoration of degraded tropical peatland in indonesia: A review,” Land, vol. 10, no. 11, pp. 1–31, 2021.
[45]  R. Putra, A. Zurfi, T. K. Nufutomo, Y. Lisafitri, and N. K. Sari, “Spatial Analysis of 2019 Peat Fire in South Sumatra Conservation Area,” IOP Conf. Ser. Earth Environ. Sci., vol. 830, no. 1, 2021.
[46]  M. Hayashi, F. F. Jin, and M. F. Stuecker, “Dynamics for El Niño-La Niña asymmetry constrain equatorial-Pacific warming pattern,” Nat. Commun., vol. 11, no. 1, pp. 1–10, 2020.
[47]  A. D. Puryajati et al., “The Effect of ENSO and IOD on the Variability of Sea Surface Temperature and Rainfall in the Natuna Sea,” IOP Conf. Ser. Earth Environ. Sci., vol. 750, no. 1, pp. 4–12, 2021.
[48]  Ivan Aliyatul Humam, Abdul Chalid, and Bagus Prasetyo, “The Modelling of Groundwater Table Management for Canal Blocking Scenarios In Sub Peatland Hydrological Unit,” Int. J. Sci. Technol. Manag., vol. 1, no. 4, pp. 289–297, 2020.
[49]  X. Lu et al., “Drainage canal impacts on smoke aerosol emissions for Indonesian peatland and non-peatland fires,” Environ. Res. Lett., vol. 16, no. 9, 2021.
[50]  Y. Suryadi, I. Soekarno, and I. A. Humam, “Effectiveness analysis of canal blocking in sub-peatland hydrological unit 5 and 6 kahayan sebangau, central kalimantan, indonesia,” J. Eng. Technol. Sci., vol. 53, no. 2, 2021.
[51]  S. Sutikno, R. Rinaldi, R. A. Putri, and G. K. Khotimah, “Study on the impact of canal blocking on groundwater fluctuation for tropical peatland restoration,” IOP Conf. Ser. Mater. Sci. Eng., vol. 933, no. 1, 2020.
[52]  K. Millard, D. K. Thompson, M. A. Parisien, and M. Richardson, “Soil moisture monitoring in a temperate peatland using multi-sensor remote sensing and linear mixed effects,” Remote Sens., vol. 10, no. 6, 2018.
[53]  S. B. Hodgkins et al., “Tropical peatland carbon storage linked to global latitudinal trends in peat recalcitrance,” Nat. Commun., vol. 9, no. 1, pp. 1–13, 2018.
[54]  B. Widiarso, S. Minardi, Komariah, T. O. Chandra, M. A. Elmahdi, and M. Senge, “Predicting peatland groundwater table and soil moisture dynamics affected by drainage level,” Sains Tanah, vol. 17, no. 1, pp. 42–49, 2020.
https://rimbakita.com/lahan-gambut/
https://kumparan.com/venture/sebaran-lahan-gambut-di-indonesia-1rA0g6UvcVl/full
https://lindungihutan.com/blog/curah-hujan-adalah-jenis-dan-perhitungan
https://www.usgs.gov/special-topics/water-science-school/science/groundwater-what-groundwater
http://lib.lemhannas.go.id/public/media/catalog/0010-121500000011767/swf/503/files/basic-html/page16.html
https://adoc.pub/tinjauan-pustaka-21-titik-panas.html
https://www2.cifor.org/ipn-toolbox/wp-content/uploads/pdf/C3.pdf
https://www.climate4life.info/2018/11/memahami-fenomena-enso-el-Niño-dan-la-Niña.html
https://www.climate4life.info/2020/07/5-fakta-fenomena-indian-ocean-dipole.html

Tinggalkan Balasan

Alamat email Anda tidak akan dipublikasikan. Ruas yang wajib ditandai *